Refractory Testing
Creep Test
Creep testing of materials at high temperatures is a very important field of study at many levels of industry. Accurate high temperature creep data is absolutely essential for the proper design and construction of any structural element operating at elevated temperatures. As such, ways of improving upon conventional creep testing methods at high temperature are highly sought after.
Test Method: ASTM C832-00(2015)
Permanent Linear Change
This test helps in determining the critical linear markings and measurements in green condition, after drying and after firing. The permanent change in dimensions is measured as permanent linear change.
Test Method: ASTM C113-2014
Pyrometric Cone Equivalent
This test helps in determining the fireclay variations, mining control, and developing raw material specifications.
Test Method:ASTM C24-09
Refractories Under Load
This test helps in determining the deformation behavior of refractory ceramic products subjected to a constant load and increasing temperature.
Test Method: ISO 1893
Abrasion Test
This test helps in determining the relative abrasion resistance of refractory brick at room temperature. This test method can also be applied to castable refractories.
Test Method:ASTM C704-2001
Permeability of Refractories
This test method is used to measure the rate of flow of air or nitrogen through refractory brick and monoliths and to thus determine the permeability of tested products.
Test Method:ASTM C577-2019
Petrographic analysis by Optical Microscopy
This test helps in determining the the microscopic analysis of materials using thin sections or polished surfaces.
Test Method:
Acid Resistance Test
This test helps in determining the acid resistance capacity of the refractory material.
Test Method: IS: 4860-1968
Thermal Conductivity
Thermal conductivity depends upon the chemical and mineralogical compositions as well as the glassy phase contained in the refractory and the application temperature. The conductivity usually changes with rise in temperature. In cases where heat transfer is required though the brick work, for example in recuperators, regenerators, muffles, etc. the refractory should have high conductivity. Low thermal conductivity is desirable for conservation of heat by providing adequate insulation.
Test Method:ASTM C201
Particle Size
This test helps in determining the percentile quantity of particles of known diameter within a sample. The specimen can be either passed through a set of standard sieves in its natural state, or if a significant amount of binding material is present, such as clay, then the sample can first be washed over a small aperture sieve to remove the binding material.
Test Method: ASTM C92-1995
Water absorption
The amount of water that a refractory can absorb is measured by the water absorption test. The results of water absorption tests are used for quality assurance.
Test Method:ASTM C20-00(2015)
Apparent Porosity
Apparent porosity, water absorption, apparent specific gravity, and bulk density are primary properties of burned refractory brick and shapes. These properties are widely used in the evaluation and comparison of product quality and as part of the criteria for selection and use of refractory products in a variety of industrial applications.
Test Method: ASTM C92-1995
Cold Crushing Strength
This test helps in determining the strength of a brick. It tells us how much load that refractory can bear in cold conditions. The concept of testing CCS of a refractory material has perhaps, come from metallurgy. This is because for any refractory brick it is rather; rare that it would fail simply due to load on it in cold condition and therefore, the determination of cold crushing strength does not appear to be important from that point of view.
Test Method: IS: 1528 (P-4)1974
Bulk Density
A useful property of refractories is bulk density, which defines the material present in a given volume. An increase in bulk density of a given refractory increases its volume stability, its heat capacity, as well as resistance to slag penetration.
Test Method: IS: 1528 (P-12)2009
Modulus of Rupture
The modulus of rupture (MOR) is the maximum surface stress in a bent beam at the instant of failure. One might expect this to be exactly the same as the strength measured in tension, but it is always larger because the volume subjected to this maximum stress is small, and the probability of a large flaw lying in the highly stressed region is also small.
Test Method: IS: 1528 (P-5)1993, IS: 1528 (P-15)1991
Dimensional check
Refractory materials must maintain dimensional stability under extreme temperatures (including repeated thermal cycling) and constant corrosion from very hot liquids and gases. The standard for refractory materials restricts compressive creep (deformation at a given time and temperature under stress) for normal working conditions to no more than 0.3 percent in the first 50 hours.
Test Method: IS: 1077-1992, IS: 10570-1983